Analysis Seminar 13 February 2025

Connected Sets in Global Bifurcation Theory

John Toland (Bath)

joint work with Boris Buffoni (Lausanne)

Abstract

The ideas in this lecture will be illustrated by, but are not restricted to, the problem

$$x = \lambda L x + R(\lambda, x), \ \lambda \in \mathbb{R}, \ x \in X \text{ a real Banach space},$$
 (‡)

where $L: X \to X$ is compact and linear, $R: \mathbb{R} \times X \to X$ is compact and continuous, $R(\lambda, 0) = 0, \ \lambda \in \mathbb{R}$, and $||R(\lambda, x)|| = o(||x||)$ as $||x|| \to 0$, locally uniformly in λ .

Under these modest hypotheses it is known that global connected sets of non-trivial solutions bifurcate from the trivial solution $(\lambda_0, 0)$ when λ_0 is a characteristic value¹ of odd algebraic multiplicity of L. Related results are that

- these global sets are path-connected if R is real-analytic
- there are simple examples with infinitely differentiable R for which the only path-connected components of the connected sets that bifurcate are singletons.

Based on elementary but subtle results in the point-set topology of locally compact, connected, metric spaces (which will be explained) the lecture will sketch proofs that these global sets of solutions are path-connected when either

• $R: \mathbb{R} \times X \to X$ is real-analytic except at countably many points in $\mathbb{R} \times X$

or

• for each $\lambda \in \mathbb{R}$ the solutions $x \in X$ of (\ddagger) are isolated.

A more general criterion for path-connectedness which is difficult to describe in terms of properties of (‡) leads to a challenging open question

¹ λ_0 is a characteristic value of L if $\lambda_0 \neq 0$ and $1/\lambda_0$ is an eigenvalue of L.